
Eating an Elephant

Iterative Maintenance &
Modernization of a Legacy System

Working with a Legacy System is...
1. Difficult
2. Under-appreciated
3. Opportunity to innovate

image-source: http://getdrawings.com/image/golden-gate-bridge-drawing-55.jpg 2

What is Legacy?

3

If your software is used, it is legacy.

Comella-Dorda, S.; Wallnau, K. C.; Seacord, R. C. & Robert, J. E. (2000),
A Survey of Black-Box Modernization Approaches for Information Systems., in 'ICSM' , IEEE Computer Society, , pp.
173-183 . 4

However… it is valuable because it is used
Don’t forget the end user has value in the
remaining functionality of the legacy system.

A legacy system has a reputation

● Sometimes a very good reputation
● Don’t dismiss the credibility it has

Thomas Mullen - Writing code for other people:
cognitive psychology of chunking

Michael Feathers - RailsConf talk (Working
effectively with Legacy code)

Taylor Jones - Working with Legacy Code

5Pressman, R. (1994), Software Engineering, a Practitioner's Approach (European Edition) , McGraw
Hill , New York .

“A major portion of the time spent coding and designing is taken up in learning and
understanding the application code.”

“The majority of the development cost is spent maintaining the existing code.”

“Most software tasks are to extend/mend existing software…”

What is Legacy?
”written years ago with outdated techniques, yet
continues to be useful” …

”large software systems that we don’t know how
to cope with but are vital to our organization”

”any systems that cannot be modified to adapt
to constantly changing business requirements
and their failure can have a serious impact on
business”

6

M. L. Brodie and M. Stonebraker, Migrating Legacy Systems. Gateways, Interfaces, and the
Incremental Approach. Morgan Kaufmann, 1995.

T. Mullen, “Writing Code for Other People: Cognitive Psychology and the Fundamentals of Good Software Design Principles. OOPSLA 2009

K. Bennett, “Legacy systems: Coping with success,” IEEE Software, vol. 12, no. 1, pp. 19–23, 1995.

If you don’t know where you
are, a map won’t help.

~Watts Humphrey

7

Maintenance,
Modernization and
Migration
(in context)

8

Maintenance includes
Migration

ISO 14764-2006 and other IEEE standards (like
ISO/IEC 12207) place migration as a departure
from the maintenance cycle…

But in my experience (working on small
teams), it should be part of the maintenance
cycle.

International Standards Organisation (ISO) (2006), Standard 14764 on Software Engineering - Software Maintenance , ISO/IEC . 9

A structured legacy
to SOA migration
process and its

evaluation in practice

Khadka, R.; Saeidi, A.; Jansen, S. & Hage, J. (2013), A structured legacy to SOA migration process and its evaluation in practice.,
in Anca Daniela Ionita; Grace A. Lewis & Marin Litoiu, ed., 'MESOCA' , IEEE, , pp. 2-11 .

10

M. Galinium and N. Shahbaz, “Success factors model: Case studies in the migration of legacy systems to service oriented
architecture,” in Computer Science and Software Engineering (JCSSE), 2012 International Joint Conference on, pp. 236 – 241,
IEEE, 2012.

Success Factors
model for migrating
legacy systems

11

Migration as a Structured Process
The iterative model looks like a way to categorize maintenance activities into phases of migration.

12

Extended Iterative
Maintenance Lifecycle

Using eXtreme
Programming

Choudhari, J. & Suman, U. (2014), 'Extended iterative maintenance life cycle using eXtreme programming.', ACM SIGSOFT
Software Engineering Notes 39 (1), 1-12. 13

Migration as Maintenance
 Looking at the big picture, we see the incorporation of migration planning into the cycling of maintenance
process

Spahn, N. (2016), When can we migrate? A model for approaching legacy system migration
https://hal.archives-ouvertes.fr/hal-01687747

14

What about the
System at UCSB?

Working with a legacy system is difficult

Enterprise Resource Planning Tool
History:

Development began in the late 90’s

Built to meet a need:

Replacing a non-y2k compliant system

Commercial framework (Graphical IDE)

Architecture:

Distributed systems

End-to end proprietary language

Commercial backups to attached storage

16

Enterprise Resource Planning Tool
4 years ago:

I was hired onto the project

Graduate studies in Software Engineering

Learned all that I could from the Chief
Architect/Designer & end users

17

History:

Development began in the late 90’s

Replacing a non-y2k compliant system

Commercial framework (Graphical IDE)

Architecture:

Distributed systems

End-to end proprietary language

Commercial backups to attached storage

Enterprise Resource Planning Tool

3 years ago:

New manager was hired

Phenomenal programmer

Quick learner with good ideas

18

2 years ago:

Iterative Migration Model

● Scrum practice: maintenance which
incorporates development strategies

● Success at every structured phase
● Melding migration into maintenance

Working with a Legacy System is: Difficult
1. 20 years of code

○ Developed by various people
2. Commercial Software product

○ Updates regularly (older versions no
longer supported)

○ Desktop compatibility issues
3. Difficult to find skilled help
4. Significant changes are costly!

Pressman, R. (1994), Software Engineering, a Practitioner's Approach (European Edition) , McGraw Hill , New York .

19

What have you done
with the system?

Working with a legacy system is under-appreciated

Automation
Backups & Monitoring

Backup: off-site managed storage

Monitoring:

- age of backups across the
distributed systems

- Responsiveness of servers
across infrastructure

21

Consistency
We only have vanilla

Ansible scripts to:

- Report on server configurations
- Surface anomalies

22

Active
maintenance

We know a language that you
don’t know...

We have become fluent in writing
and debugging this legacy language
so that we can:

- Correct defects
- Create new functionality

23

Create new functionality...
In the legacy language.

- Using the limited data types
- Language nuances
- Within the paradigm of the existing

Software Framework

In NodeJS:

- Creating APIs to be consumed
- Building prototypes

24

Building
Prototypes...
Leveraging Campus SSO

NodeJS + React + Firebase

- Serverless (almost) architecture

25

Working with a
Legacy System is:
Under-Appreciated
Prototypes don’t always get to
production

26

Working with a
Legacy System is:
Under-Appreciated
Prototypes don’t always get to
production

Most of the changes that we make
to the system are never noticed by
users

27

Working with a
Legacy System is:
Under-Appreciated
Prototypes don’t always get to
production

Most of the changes that we make
to the system are never noticed by
users

Incremental changes for a better
user experience

28

Working with a
Legacy System is:
Under-Appreciated
Prototypes don’t always get to
production

Most of the changes that we make
to the system are never noticed by
users

Incremental changes for a better
user experience

Image: https://www.bluecoda.com/blog/shift-3-year-redesign-amazon-model

29

What are you working
on now?

Working with a legacy system provides an opportunity to innovate

APIs and
services

NodeJS

Replace:

‘one of a kind’ services:

don’t touch it, it might break

Create:

Testable, reproducible:

micro-services

31

Replace: fragile services
What was:

- Older version of a Desktop OS
- Legacy server software not supported
- Proprietary database driver
- Convoluted codebase:

- Legacy language
- Not in the style of the rest of the app

image-source: http://justfunfacts.com/wp-content/uploads/2016/03/golden-gate-bridge-drawing.jpg
32

Replace: fragile services
What was:

- Older version of a Desktop OS
- Legacy server software not supported
- Proprietary database driver
- Convoluted codebase:

- Legacy language
- Not in the style of the rest of the app

Is becoming:

- Lightweight express application
- Deployable to any modern OS
- Leveraging open source code

- Testable
- Reliable
- Inspectable

image-source: http://justfunfacts.com/wp-content/uploads/2016/03/golden-gate-bridge-drawing.jpg
33

Create: future-facing tools & prototypes
UCPATH

- Interface to aide in title code changes
- Employee ID mapping service utilized

within existing framework

APIGEE

- Looking to be a producer/consumer of the
API service

Overhaul of the existing web interface:

- Single page web application
- Making use of the existing auth system

Image:
https://inhabitat.com/wp-content/blogs.dir/1/files/2013/05/Golden-Gate-Bridge-Pavilion-Jensen-Architects-3.jpg

34

Working with a
Legacy System
provides an:
opportunity to
innovate
Some prototypes evolve into
production services

Change is slow, but it is
taking place

The goal is maintain usability
to meet business needs.
Maintain, modernize or
migrate with end users. 35

Discussion...

Noah Spahn
noah.spahn@ucsb.edu

