UCCSC 2018: UC Davis

Eating an Elephant
Iterative Maintenance & Modernization of a
Legacy Software System

Noah C. Spahn
Software Engineer: Enterprise Technology Services
University of California, Santa Barbara
noah.spahn@ucsb.edu

Abstract—This paper presents a survey of academic soft-
ware models which led to the development of new model
for maintaining a legacy enterprise software system whilst
modernizing it towards a migration. This paper seeks to
inform software engineers. Since informed engineers are best
equipped to combat the entropic decline of an aging system.
The specific points emphasized may not translate into the
modernization of most legacy projects, however cataloging the
journey may be helpful for others who are about to embark
upon a similar trek.

I. INTRODUCTION

The fact that systems in use must be maintained in order
to keep in step with usage requirements has already been
well documented. There is no shortage of literature on
software maintenance. A more recent addition to the corpus
of literature on software engineering is that which provides
guidance and direction on the practice of migrating from a
legacy system to a new software system that better meets
the needs of the end users. Even here, there is no shortage
of literature on the subject. However, it has been noted that
the proposed models which address the topic are largely
specific to a portion of the practice: either the planning or
the implementation. This section of the paper catalogues
the academic landmarks which led to the development
of the models used in the iterative maintenance of an
enterprise legacy application at the University of California,
Santa Barbara (UCSB).

A. Maintenance Models

There are many well known and widely accepted main-
tenance models for the software engineering lifecycle.
These models are indispensable to any large scale software
organization producing mission critical software (where
lives are at stake). The standards fall short of what can be
deemed as a practical level of rigor for a smaller software
organization with less resources at their disposal[1].

The ISO 14764 standard depicts software migration as
a departure from the cycle of software maintenance. This
is simply not an option for a smaller team without the re-
sources to devote to separate maintenance and (migration)
or development efforts.[2]

B. Structured Migration Process

Many organizations gravitate towards wholesale migra-
tion away from a legacy software system. The Structured
Legacy to SOA migration process and it’s evaluation in
practice [3] combines the planning and implementation

phases to provide a complete model which coalesces both
parts into one.

Not all the phases were common to all migration efforts.
The omission of the ’migration feasibility determination
phase’ was common among organizations. This glaring
omission stood out as a potential area for further inves-
tigation,.

C. Success Factors Model

Equipped with a clear understanding of the entire mi-
gration process brings the weight of responsibility. Sub-
sequently the question would be posited: "How would
an organization ensure a successful migration?”, or more
specifically: “what are the common factors of successful
migration efforts?”. Galinium and Shabbaz [4] conducted
a systematic survey of the published case studies on the
migration of legacy software systems. The study indicated
a strong correlation between migration success and the
involvement of the heterogeneous group made up of both
technical and business stakeholders.

D. Iterative Model for Migrating Legacy Systems

With the findings of these three papers as guideposts,
the ingredients were on the table to cook up a new model
to equip an under-staffed software organization fo proceed
with an informed, well planned and intentionally executed
migration of a legacy software system to a service oriented
architecture . The model was drafted as the Iterative Model
for Migrating Legacy Systems (IMMLS) and put into
practice by a small team at the University of California,
Santa Barbara[5].

A year of iterating through the IMMLS surfaced some
incompatibilities. The model did not devote enough time
and effort to the daily ongoing maintenance of the legacy
system. A small team which handles development, opera-
tion and support cannot forfeit support in lieu of develop-
ment. The software engineers were torn between the rigor
of phased migration and the distraction of change requests.
Clearly, the adjustments were necessary.

E. eXtreme Programming as Maintenance

Choudhari and Suman propose a model that catalogs
change requests as either bug reports or system enhance-
ments. The requests are summarized as stories (brief de-
scriptions) and assigned effort estimations. These stories
feed into the extreme programming model, which empha-
sizes respect and communication[6].

August 14, 2018

UCCSC 2018: UC Davis

II. MODERNIZATION AS MIGRATION

Considering the need to incorporate change requests, the
IMMLS became a maintenance model with a clear intent
to modernize towards migration[7].

1

1

/’ 1

1

1

'

LU 1

|

_ | -
1

Fig. 1: Iterative Model for the Migration of Legacy Systems
(71

Wodernize
TSU
Sprint

backlog

We can follow this model from left to right, but most
of the model takes place on the left-hand side, cycling
over the migration feasibility determination phase (AKA,
migration planning). Requests for change feed the process
of maintenance. The change requests can come from any
stakeholder. Requests are written in a concise language
known as a story. Stories are written on an index card,
written in a style that lacks ambiguity and clearly defines
a deliverable. Written stories are evaluated and given an
effort estimation before work begins, then the story is
placed in the sprint backlog.

When a software iteration is planned, items are drawn
from the ordered backlog and placed into the sprint.
Each correction that is made to a legacy system requires
an understanding of the system (to keep from breaking
existing functionality). Likewise, even enhancements can
not be properly added in without an understanding of
the current system. Enhancements also provide the added
benefit of clarifying the understanding (and vision for) the
target system.

The agile movement has shown us the value of a
shortened feedback loop [8], and we can make use of a
shorted feedback loop from within each of the phases of
the structured migration. Specifically, we propose taking
the small steps in the form of the phases described in the
structured six-phase process.

The idea being that by aggressively maintaining the
legacy application and extending the usage of it, the
inevitability of wholesale migration is postponed as the
application becomes better suited for migration.

III. CONCLUSION

The desire to discard a legacy system and migrate to a
new framework led to the investigation of legacy system
migration. An amalgamation of academic models provided
a promising framework for such a migration. The practical
application of the model surfaced several pain points for
the pilot organization, and adjustments were made. The
adaptation of the model has led to some significant re-
workings of a legacy application and several modules have
been replaced entirely.

A. Problems

One problem with the model is the lack of a definitive
end product. Once the focus was shifted from wholesale
legacy system migration to an iterative enhancement model
with modular migration components the final goal became
ambiguous. The legacy system is constantly being re-
evaluated and re-worked, with the underlying understand-
ing that a system that is in use will require constant and
vigilant maintenance to keep in favor with end users. Every
system has technical debt and legacy parts, the focus has
shifted from removing the legacy system to removing the
legacy parts of the system. There will always be legacy
parts in a system, and hence the job is never done.

Another problem is the challenge of metrics. Assuredly,
we cannot improve that which is not measured [9]. We have
not settled on a satisfactory method of capturing the ’right
amount’ of data for the processes in place. The crux of the
problem is to find a balance where meaningful metrics are
collected on the processes (of development, maintenance
and support) but the practice of gathering metrics does not
impede the actual processes.

B. Future Work

There is still work to be done to realize the potential
(and deficiencies) in this model. There are two main areas
which are ripe for further exploration: the continued use of
the model to a definitive ’end’ so that a retrospective can be
conducted and the repeated application of the model within
different contexts. The former is stymied by the challenge
of software entropy (a system in use is never complete)
and the latter will be dependent upon the adoption of the
model by others.

REFERENCES

[1] P. Grubb and A. A. Takang, Software Maintenance: Concepts and
Practice. World Scientific, 2nd ed., 2003.

[2] International Standards Organisation (ISO), Standard 14764 on Soft-
ware Engineering - Software Maintenance. ISO/IEC, 2006.

[3] R. Khadka, A. Saeidi, S. Jansen, and J. Hage, “A structured legacy
to soa migration process and its evaluation in practice.,” in MESOCA
(A. D. Ionita, G. A. Lewis, and M. Litoiu, eds.), pp. 2-11, IEEE,
2013.

[4] M. Galinium and N. Shahbaz, “Success factors model: Case studies
in the migration of legacy systems to service oriented architecture,”
in Computer Science and Software Engineering (JCSSE), 2012 Inter-
national Joint Conference on, pp. 236 — 241, IEEE, 2012.

[5] N. Spahn, “Migration planning - iterative model for migrating legacy
systems.” unpublished project paper, 2016.

[6] J. Choudhari and U. Suman, “Extended iterative maintenance life
cycle using extreme programming.,” ACM SIGSOFT Software Engi-
neering Notes, vol. 39, no. 1, pp. 1-12, 2014.

[7]1 N. Spahn, “When can we migrate? a model for approaching legacy
system migration.” https://hal.archives-ouvertes.fr/hal-01687747.
[Online; accessed 10-August-2018].

[8] J. Highsmith, Agile Project Management - Creating Innovative Prod-
ucts. Boston: Pearson Education, 2004.

[91 W. S. Humphrey, Managing the Software Process.
Software Engineering, Addison-Wesley, 1989.

SEI Series in

August 14, 2018

